Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Behav Brain Res ; 466: 114974, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554850

RESUMEN

Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Diterpenos de Tipo Kaurano , Potenciación a Largo Plazo , Animales , Femenino , Masculino , Región CA1 Hipocampal/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Ratones , Dendritas/efectos de los fármacos , Memoria/efectos de los fármacos , Factores Sexuales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología
2.
Molecules ; 26(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34684684

RESUMEN

Memory deterioration in Alzheimer's disease (AD) is thought to be underpinned by aberrant amyloid ß (Aß) accumulation, which contributes to synaptic plasticity impairment. Avenanthramide-C (Avn-C), a polyphenol compound found predominantly in oats, has a range of biological properties. Herein, we performed methanolic extraction of the Avns-rich fraction (Fr. 2) from germinated oats using column chromatography, and examined the effects of Avn-C on synaptic correlates of memory in a mouse model of AD. Avn-C was identified in Fr. 2 based on 1H-NMR analysis. Electrophysiological recordings were performed to examine the effects of Avn-C on the hippocampal long-term potentiation (LTP) in a Tg2576 mouse model of AD. Avn-C from germinated oats restored impaired LTP in Tg2576 mouse hippocampal slices. Furthermore, Avn-C-facilitated LTP was associated with changes in the protein levels of phospho-glycogen synthase kinase-3ß (p-GSK3ß-S9) and cleaved caspase 3, which are involved in Aß-induced synaptic impairment. Our findings suggest that the Avn-C extract from germinated oats may be beneficial for AD-related synaptic plasticity impairment and memory decline.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , ortoaminobenzoatos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Avena/química , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Extractos Vegetales/farmacología
3.
J Physiol Sci ; 71(1): 14, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926383

RESUMEN

High-fat diets (HFDs) and obesity can cause serious health problems, such as neurodegenerative diseases and cognitive impairments. Consumption of HFD is associated with reduction in hippocampal synaptic plasticity. Rosa damascena (R. damascena) is traditionally used as a dietary supplement for many disorders. This study was carried out to determine the beneficial effect of hydroalcoholic extract of R. damascena on in vivo hippocampal synaptic plasticity (long-term potentiation, LTP) in the perforant pathway (PP)-dentate gyrus (DG) pathway in rats fed with an HFD. Male Wistar rats were randomly assigned to four groups: Control, R. damascena extract (1 g/kg bw daily for 30 days), HFD (for 90 days) and HFD + extract. The population spike (PS) amplitude and slope of excitatory post-synaptic potentials (EPSP) were measured in DG area in response to stimulation applied to the PP. Serum oxidative stress biomarkers [total thiol group (TTG) and superoxide dismutase (SOD)] were measured. The results showed the HFD impaired LTP induction in the PP-DG synapses. This conclusion is supported by decreased EPSP slope and PS amplitude of LTP. R. damascena supplementation in HFD animals enhanced EPSP slope and PS amplitude of LTP in the granular cell of DG. Consumption of HFD decreased TTG and SOD. R. damascena extract consumption in the HFD animals enhanced TTG and SOD. These data indicate that R. damascena dietary supplementation can ameliorate HFD-induced alteration of synaptic plasticity, probably through its significant antioxidant effects and activate signalling pathways, which are critical in controlling synaptic plasticity.


Asunto(s)
Dieta Alta en Grasa , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Extractos Vegetales/farmacología , Rosa/química , Animales , Dieta Alta en Grasa/efectos adversos , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Vías Nerviosas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Wistar
4.
Sci Rep ; 11(1): 9182, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911138

RESUMEN

Neurodegenerative disorders are characterized by the decline of cognitive function and the progressive loss of memory. The dysfunctions of the cognitive and memory system are closely related to the decreases in brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) signalings. Ribes fasciculatum, a medicinal plant grown in diverse countries, has been reported to pharmacological effects for autoimmune diseases and aging recently. Here we found that afzelin is a major compound in Ribes fasciculatum. To further examine its neuroprotective effect, the afzelin (100 ng/µl, three times a week) was administered into the third ventricle of the hypothalamus of C57BL/6 mice for one month and scopolamine was injected (i.p.) to these mice to impair cognition and memory before each behavior experiment. The electrophysiology to measure long-term potentiation and behavior tests for cognitive and memory functions were performed followed by investigating related molecular signaling pathways. Chronic administration of afzelin into the brain ameliorated synaptic plasticity and cognitive/memory behaviors in mice given scopolamine. Studies of mice's hippocampi revealed that the response of afzelin was accountable for the restoration of the cholinergic systems and molecular signal transduction via CREB-BDNF pathways. In conclusion, the central administration of afzelin leads to improved neurocognitive and neuroprotective effects on synaptic plasticity and behaviors partly through the increase in CREB-BDNF signaling.


Asunto(s)
Demencia/tratamiento farmacológico , Demencia/etiología , Manósidos/farmacología , Fármacos Neuroprotectores/farmacología , Proantocianidinas/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Demencia/inducido químicamente , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Manósidos/química , Manósidos/aislamiento & purificación , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/química , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Ribes/química , Escopolamina/toxicidad
5.
Pharm Biol ; 59(1): 367-374, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33789075

RESUMEN

CONTEXT: ECa 233 is the standardized extract of Centella asiatica (L.) Urban. (Apiaceae). It contains at least 85% of triterpenoid glycosides and yields neuroprotective and memory-enhancing effects. However, the exact molecules exerting the effects might be triterpenic acid metabolites reproduced through gut metabolism after orally ingesting C. asiatica, not triterpenoid glycosides. OBJECTIVE: This study demonstrates the effect of unmetabolized ECa 233 on hippocampal synaptic plasticity after directly perfusing ECa 233 over acute brain slices. MATERIALS AND METHODS: The brain slices obtained from 7-week-old male Wistar rats were randomly divided into 4 groups. We perfused either artificial cerebrospinal fluid (ACSF), 0.01% DMSO, 10 µg/mL ECa 233, or 100 µg/mL on brain slices, and measured the long-term potentiation (LTP) magnitude to determine the synaptic plasticity of hippocampal circuits in each group. RESULTS: The LTP magnitude of ACSF, DMSO, 10 ug/mL ECa 233, and 100 ug/mL ECa 233 groups increased from 100% to 181.26 ± 38.19%, 148.74 ± 5.40%, 273.71 ± 56.66%, 182.17 ± 18.61%, respectively. ECa 233 at the concentration of 10 µg/mL robustly and significantly enhanced hippocampal LTP magnitude. The data indicates an improvement of the hippocampal synaptic plasticity. DISCUSSION AND CONCLUSIONS: This study emphasizes the effectiveness of triterpenoid glycosides in ECa 233 on synaptic plasticity enhancement. Therefore, this study supported and complimented the known effects of C. asiatica extract on the enhancement of synaptic plasticity, and subsequently, learning and memory, suggesting that ECa 233 could be a promising memory enhancing agent.


Asunto(s)
Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Relación Dosis-Respuesta a Droga , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Hipocampo/metabolismo , Masculino , Memoria/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Ratas , Ratas Wistar , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
6.
Mol Med Rep ; 23(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33576466

RESUMEN

Drug addiction is a chronic and recurrent disease associated with learning and memory. Shaped by drug use and cues from the environment, drug memory serves a key role in drug­seeking behaviour. Methamphetamine (MA), a globally abused drug, causes cognitive impairment, and endoplasmic reticulum (ER) stress is one of the mechanisms via which this occurs. In the current study, it was hypothesized that ER stress may serve a role in the disturbance of drug memory. The present study demonstrated that 5 mg/kg MA inhibited conditioned place preference behaviour via ER stress, which caused a disruption in long­term potentiation in the hippocampus. When mice were pre­treated with the ER stress inhibitors 4­phenyl butyric acid or tauroursodeoxycholic acid, drug­evoked synaptic plasticity was induced. Western blotting results indicated that treatment with 5 mg/kg MA enhanced the expression of cyclin­dependent kinase­5 and decreased the expression of Ca2+/calmodulin­dependent protein kinase II α via ER stress. Collectively, the present results suggested that a large dose of MA inhibited drug­evoked synaptic plasticity and disrupted drug memory by inducing ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Metanfetamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Ácido Tauroquenodesoxicólico/farmacología
7.
Nutr Neurosci ; 24(12): 951-962, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31814540

RESUMEN

Introduction: Phytoestrogens are non-steroidal estrogen analogues and are found primarily in soy products. They have received increasing attention as dietary supplements for estrogen deficiency and as modulators of endogenous estrogen functions, including cognition and emotion. In addition to modifying the levels of circulating sex hormones, phytoestrogens also exert direct effects on estrogen and androgen receptors in the brain and thus effectively modulate the neural circuit functions.Objective: The aim of this study was to investigate the long-term effects of low phytoestrogen intake (∼6 weeks) on the hippocampal plasticity and hippocampus-dependent memory formation in the adult C57BL/6 male mice.Methods and Results: In comparison to mice on a diet with normal phytoestrogen content, mice on low phytoestrogen diet showed a significant reduction in the phosphorylation of NR2B subunit, a molecular correlate of plasticity in the Schaffer collateral-CA1 synapse. We observed a profound decrease in long-term potentiation (LTP) in the ventral hippocampus, whereas no effect on plasticity was evident in its dorsal portion. Furthermore, we demonstrated that acute perfusion of slices with an estrogen analogue equol, an isoflovane metabolized from daidzein produced by the bacterial flora in the gut, was able to rescue the observed LTP deficit. Examining potential behavioral correlates of the plasticity attenuation, we found that mice on phytoestrogen-free diet display decreased contextual fear memory at remote but not at recent time points after training.Conclusions: Our data suggests that nutritional phytoestrogens have profound effects on the plasticity in the ventral hippocampus and ventral hippocampus-dependent memory.


Asunto(s)
Dieta , Hipocampo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Fitoestrógenos/administración & dosificación , Animales , Conducta Animal , Equol/farmacología , Miedo/fisiología , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología
8.
Curr Med Sci ; 40(3): 434-443, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32681248

RESUMEN

Progressive memory loss and cognitive impairment are the main clinical manifestations of Alzheimer's disease (AD). Currently, there is no effective drug available for the treatment of AD. Previous studies have demonstrated that the cognitive impairment of AD is associated with oxidative stress and the inhibition of AKT and ERK phosphorylation. Grape seed proanthocyanidin extract (GSPE) has been shown to have strong antioxidant effect and can protect the nervous system from oxidative stress damage. This study aimed to investigate the protective effect of GSPE on the cognitive and synaptic impairments of AD using a sporadic AD rat model induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) (ICV-STZ). Rats were treated with GSPE (50, 100, or 200 mg/kg every day) by intragastrical (ig.) administration for continuous 7 weeks, and ICV-STZ (3 mg/kg) was performed on the first day and third day of week 5. Learning and memory abilities were assessed by the Morris water maze (MWM) test at week 8. After behavioral test, hippocampal long-term potentiation (LTP) was recorded, and the levels of malondialdehyde (MDA), superoxide dismutases (SOD), glutathione (GSH) and the protein expression of AKT and ERK were measured in the hippocampus and cerebral cortex of rats. Our study revealed that ICV-STZ significantly impaired the working learning ability and hippocampal LTP of rats, significantly increased the levels of MDA, and decreased the activity of SOD and GSH in the hippocampus and cerebral cortex. In contrast, GSPE treatment prevented the impairment of cognitive function and hippocampal LTP induced by ICV-STZ, decreased the level of MDA, and increased the level of SOD and GSH. Furthermore, Western blot results showed that GSPE treatment could prevent the loss of AKT and ERK activities in the hippocampus and cerebral cortex induced by ICV-STZ. Our findings demonstrate that GSPE treatment could ameliorate the impairment of cognitive ability and hippocampal synaptic plasticity in a rat model of sporadic AD by inhibiting oxidative stress and preserving AKT and ERK activities. Therefore, GSPE may be an effective agent for the treatment of cognitive deficits associated with sporadic AD.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Extracto de Semillas de Uva/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proantocianidinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estreptozocina/farmacología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Antioxidantes/fisiología , Cognición/efectos de los fármacos , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Glutatión/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
9.
Neurosci Lett ; 729: 135026, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32387717

RESUMEN

The present study was aimed to investigate the pre-treatment effect of Centella asiatica (CeA) extract on long-term potentiation (LTP) in a rat model of Alzheimer's disease (AD). A total of 32 male Wistar rats weighing 380 ± 30 g were randomly divided into four groups (n = 8). Group 1 (C: Control): the control group. Group 2 (L: Lesion): The nucleus basalis of Meynert (NBM) of rats' brain was bilaterally destroyed by injection of Ibotenic acid. Group 3 (CeA): Animals in this group received the CeA leaf extract for only a period of six weeks. Group 4 (CeA + L): The NBM of rats was destroyed by Ibotenic acid after six weeks of a diet containing the CeA leaf extract. In all groups, LTP was recorded using the electrophysiological technique and fEPSP after high frequency stimulation (HFS). The results showed that the slope and amplitude of PS as well as the sub-curve level significantly increased in the CeA + L group compared with the L and CeA groups. The CeA extract improved and strengthened the slope, amplitude and sub-curve surface of cumulative waves in animals with NBM lesion. The results showed that administration CeA extract for six weeks before induction of NBM lesion and induction of Alzheimer could enhance memory. In other words, the CeA extract had a preventive or protective role. The present study showed that CeA had a protective role for neurons among rats with NBM lesion.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Plantas Medicinales , Enfermedad de Alzheimer/patología , Animales , Núcleo Basal de Meynert/patología , Modelos Animales de Enfermedad , Ácido Iboténico/farmacología , Masculino , Memoria/efectos de los fármacos , Neuronas/patología , Ratas Wistar
10.
Neuroreport ; 31(8): 597-604, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32282574

RESUMEN

The memory-boosting property of Indian traditional herb, Convolvulus pluricaulis, has been documented in literature; however, its effect on synaptic plasticity has not yet been reported. Two important forms of synaptic plasticity known to be involved in the processes of memory formation are long-term potentiation (LTP) and long-term depression (LTD). In the present study, the effect of C. pluricaulis plant extract on LTP and LTD were evaluated. The adult male Wistar rats were fed orally with 250, 500 and 1000 mg/kg of this extract for 4 weeks and the effect was determined on LTP and LTD in the Schaffer collaterals of the hippocampal cornu ammonis region CA1. We found that the 500 mg/kg dose of the extract could significantly enhance LTP compared to the vehicle treated ones. Moreover, the same dose could also reduce LTD while used in a separate set of animals. Also, a fresh group of animals treated with the effective dose (500 mg/kg) of plant extract were examined for memory retention in two behavioral platforms namely, contextual fear conditioning (CFC) and novel object recognition test (NORT). Increased fear response to the conditioned stimulus and enhanced recognition of objects were observed in CFC and NORT, respectively, both indicating strengthening of memory. Following up, ex-vivo electrophysiology experiments were performed with the active single molecule scopoletin, present in C. pluricaulis extract and similar patterns in synaptic plasticity changes were obtained. These findings suggest that prolonged treatment of C. pluricaulis extract, at a specific dose in healthy animals, can augment memory functions by modulating hippocampal plasticity.


Asunto(s)
Convolvulus , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratas Wistar
11.
Brain Res ; 1726: 146475, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31560865

RESUMEN

Diabetes mellitus (DM) is associated with impaired hippocampal synaptic plasticity. Coenzyme Q10 (CoQ10) acts as an antioxidant and exerts neuroprotective effects. Accordingly, this study aimed at evaluating the effects of CoQ10 on hippocampal long-term potentiation (LTP) and paired-pulse facilitation (PPF) in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were randomly divided into six groups (n = 8 per group) as follows and treated for 90 days: the control, control + low dose of CoQ10 (100 mg/kg), control + high dose of CoQ10 (600 mg/kg), diabetic, diabetic + low dose of CoQ10, and diabetic + high dose of CoQ10 groups. Diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ. The population spike (PS) amplitude and slope of excitatory post synaptic potentials (EPSPs) were measured in dentate gyrus (DG) area in response to the stimulation applied to the perforant path (PP). The results showed that the STZ-induced diabetes impaired LTP induction in the PP-DG synapses. This finding is supported by the decreased EPSP slope and PS amplitude of LTP (P < 0.05). Both low- and high-dose CoQ10 supplementation in the control and diabetic animals enhanced EPSP slope and PS amplitude of LTP in the granular cells of DG (P < 0.05). PPF was affected by LTP induction in diabetic animals receiving the high dose of CoQ10 (P < 0.05). It is suggested that CoQ10 administration could attenuate deteriorative effect of STZ-induced diabetes on in vivo LTP in the DG. The enhanced transmitter release can be partly one of the possible underlying mechanism(s) responsible for the LTP induction in the diabetic animals treated with CoQ10.


Asunto(s)
Antioxidantes/administración & dosificación , Giro Dentado/efectos de los fármacos , Diabetes Mellitus/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Ubiquinona/análogos & derivados , Animales , Giro Dentado/fisiología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/fisiopatología , Masculino , Neuronas/fisiología , Ratas Wistar , Estreptozocina/administración & dosificación , Ubiquinona/administración & dosificación
12.
Behav Brain Res ; 378: 112278, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31629836

RESUMEN

Stroke leads to devastating outcomes including impairments of sensorimotor and cognitive function that may be long lasting. New intervention strategies are needed to overcome the long-lasting effects of ischemic injury. Previous studies determined that treatment with 5-methoxyindole-2-carboxylic acid (MICA) conferred chemical preconditioning and neuroprotection against stroke. The purpose of the current study was to determine whether the preconditioning can lead to functional improvements after stroke (done by transient middle cerebral artery occlusion). After 4 weeks of MICA feeding, half the rats underwent ischemic injury, while the other half remained intact. After one week recovery, all the rats were tested for motor and cognitive function (rotorod and water maze). At the time of euthanasia, measurements of long-term potentiation (LTP) were performed. While stroke injury led to motor and cognitive dysfunction, MICA supplementation did not reverse these impairments. However, MICA supplementation did improve stroke-related impairments in hippocampal LTP. The dichotomy of the outcomes suggest that more studies are needed to determine optimum duration and dosage for MICA to lead to substantial motor and cognitive improvements, along with LTP change and neuroprotection.


Asunto(s)
Hipocampo/efectos de los fármacos , Indoles/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/prevención & control , Accidente Cerebrovascular Isquémico/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Desempeño Psicomotor/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Suplementos Dietéticos , Dihidrolipoamida Deshidrogenasa/efectos de los fármacos , Modelos Animales de Enfermedad , Indoles/administración & dosificación , Infarto de la Arteria Cerebral Media/complicaciones , Accidente Cerebrovascular Isquémico/etiología , Masculino , Fármacos Neuroprotectores/administración & dosificación , Ratas , Ratas Sprague-Dawley
13.
Sci Rep ; 9(1): 8404, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182820

RESUMEN

The herb Centella asiatica has long been considered a memory tonic. A recent review found no strong evidence for improvement of cognitive function, suggesting negative results were due to limitations in dose, standardization and product variation. We used a standardized extract of C. asiatica (ECa 233) to study behavioral, cellular and molecular effects on learning and memory enhancement. ECa 233 (10, 30, and 100 mg/kg) was given orally to normal rats twice a day for 30 days. We used the Morris water maze to test spatial learning and performed acute brain slice recording to measure changes of synaptic plasticity in the hippocampus, a core brain region for memory formation. Plasticity-related protein expressions (NR2A, NR2B, PSD-95, BDNF and TrkB) in hippocampus was also measured. Rats receiving 10 and 30 mg/kg doses showed significantly enhanced memory retention, and hippocampal long-term potentiation; however, only the 30 mg/kg dose showed increased plasticity-related proteins. There was an inverted U-shaped response of ECa 233 on memory enhancement; 30 mg/kg maximally enhanced memory retention with an increase of synaptic plasticity and plasticity-related proteins in hippocampus. Our data clearly support the beneficial effect on memory retention of a standardized extract of Centella asiatica within a specific therapeutic range.


Asunto(s)
Centella/química , Memoria/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Homólogo 4 de la Proteína Discs Large , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Plasticidad Neuronal/efectos de los fármacos , Ratas Wistar , Receptor trkB/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Triterpenos/sangre
14.
Psychopharmacology (Berl) ; 236(9): 2823-2834, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31115613

RESUMEN

RATIONALE AND OBJECTIVE: Paeoniflorin has been reported to exhibit antidepressant-like effects in several animal model depression; and it also exerts a neuroprotective effect. In the present study, we investigated the effects of paeoniflorin administration on depression-like behaviors and cognitive abilities in mice subjected to chronic unpredictable mild stress (CUMS), an animal model associated with depressive disorders and cognitive deficits. METHODS: We administered paeoniflorin (20 mg/kg), which is the main active constituent extracted from Paeonia lactiflora Pall. and exerts multiple pharmacological actions, to CUMS mice. Subsequently, animals were subjected to tests of depression-like behavior including the sucrose preference test, the forced swimming test and the tail suspension test. The Morris water maze (MWM) task was applied to evaluate learning and memory capacity. Hippocampal CA1 long-term potentiation (LTP) was recorded. Dendritic spine density and the expression levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the hippocampus were also investigated. RESULTS: The administration of paeoniflorin protected against CUMS-induced depression-like behavior. Paeoniflorin also improved the performance of CUMS mice in the MWM. The impairment of hippocampal CA1 LTP caused by CUMS was also reversed. Furthermore, paeoniflorin administration prevented decreases in dendritic spine density and in the expression of BDNF and PSD95 in the hippocampus of CUMS mice. CONCLUSION: Our observations suggest that paeoniflorin is a potential antidepressant that protects against cognitive impairment in depression.


Asunto(s)
Glucósidos/uso terapéutico , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Monoterpenos/uso terapéutico , Aprendizaje Espacial/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/psicología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/psicología , Glucósidos/farmacología , Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Monoterpenos/farmacología , Técnicas de Cultivo de Órganos , Distribución Aleatoria , Aprendizaje Espacial/fisiología , Estrés Psicológico/fisiopatología
15.
Med Sci Monit ; 25: 1749-1758, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843525

RESUMEN

BACKGROUND Temporal lobe epilepsy (TLE) is the most common type of intractable epilepsy in humans, and it is often accompanied by cognitive impairment. In this study, we examined the effects of (-)-Epigallocatechin-3-gallate (EGCG) after SE on behavior in the rat lithium-pilocarpine model of TLE. MATERIAL AND METHODS The rats were randomly divided into 3 groups: (1) the control group, in which 12 rats received no treatment); (2) the epilepsy (EP) group, in which 15 rats were treated with saline after status epilepticus (SE); and (3) the EP+EGCG group, in which 15 rats were treated with EGCG (25 mg/kg/d, intraperitoneal) after SE. The SE model was induced with lithium chloride-pilocarpine, and electroencephalography and a high-definition camera were used to monitor SRS. The Morris water maze test and hippocampal late-phase long-term potentiation (L-LTP) recordings were used to evaluate cognitive impairment, and TLR4, NF-kappaB, and IL-1ß levels were determined using Western blot analysis. RESULTS We concluded that EGCG treatment after SE (1) markedly reduced SRS frequency in pilocarpine-treated rats, (2) improved epilepsy-induced cognitive impairment and reversed epilepsy-induced synaptic dysfunction in L-LTP in vivo, (3) protected hippocampal neurons from damage after SRS, and (4) significantly attenuated the increase in TRL-4 and IL-1ß hippocampal levels. The above findings clearly show that EGCG exerts antiepileptogenesis and neuroprotective effects on pilocarpine-induced epilepsy. CONCLUSIONS We found that EGCG can suppress seizures and inhibit hippocampal neuronal apoptosis, as well as improving cognitive function of epileptic rats. Our findings suggest that EGCG may a novel adjuvant therapeutic approach in epilepsy by improving epileptic behavior and cognitive dysfunction.


Asunto(s)
Catequina/análogos & derivados , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Animales , Catequina/metabolismo , Catequina/farmacología , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/metabolismo , Litio , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Pilocarpina , Ratas , Ratas Sprague-Dawley , Convulsiones/fisiopatología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
16.
J Ethnopharmacol ; 236: 147-154, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-30851370

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liuwei Dihuang decoction (LW), a classic formula in Traditional Chinese medicine (TCM), has been used for nearly one thousand years for various diseases with characteristic features of kidney yin deficiency. LW consists of 6 herbs including Dihuang (prepared root of Rehmannia glutinosa (Gaertn.) DC.), Shanyao (rhizome of Dioscorea polystachya Turcz.), Shanzhuyu (fruit of Cornus officinalis Siebold & Zucc.), Mudanpi (root bark of Paeonia × suffruticosa Andrews), Zexie (rhizome of Alisma plantago-aquatica L.) and Fuling (scleorotia of Wolfiporia extensa (Peck) Ginns). LW-active fraction combination (LW-AFC) is extracted from LW, it is effective for the treatment of kidney yin deficiency in many animal models. Recent researches indicate that the "kidney deficiency" is related to a disturbance in the neuroendocrine immunomodulation (NIM) network, and glucocorticoids play an important role in kidney deficiency. AIM OF THE STUDY: This study evaluated the effects of LW-AFC and the active fractions (polysaccharide, LWB-B; glycoside, LWD-b; oligosaccharide, CA-30) on corticosterone (Cort)-induced long-term potentiation (LTP) impairment in vivo. MATERIALS AND METHODS: In this study, LTP was used to evaluate the synaptic plasticity. LW-AFC was orally administered for seven days. The active fractions were given by either chronic administration (i.g., i.p., 7 days) or single administration (i.c.v., i.g., i.p.). Cort was injected subcutaneously 1 h before the high-frequency stimulation (HFS) to induce LTP impairment. Moreover, in order to research on the possible effective pathways, an antibiotic cocktail and an immunosuppressant were also used. RESULTS: Chronic administration (i.g.) of LW-AFC and its three active fractions could ameliorate Cort-induced LTP impairment. Single administration (i.c.v., i.g., i.p.) of any of the active fractions had no effect on Cort-induced LTP impairment, while chronic administration (i.g., i.p.) of LWB-B or LWD-b showed positive effects against Cort. Interestingly, CA-30 only showed protective effects via i.g. administration, and there was little effect when CA-30 was administered i.p. In addition, when the intestinal microbiota was disrupted by application of the antibiotic cocktail, CA-30 showed little protective effects against Cort. The effects of LW-AFC were also abolished when the immune function was inhibited. In the hippocampal tissue, Cort treatment increased corticosterone and glutamate, and LW-AFC could inhibit the Cort-induced elevation of corticosterone and glutamate; there was little change in D-serine in Cort-treated animals, but LW-AFC could increase the D-serine levels. CONCLUSION: LW-AFC and its three active fractions could ameliorate Cort-induced LTP impairment. Their protective effects are unlikely by a direct way, and immune modulation might be the common pathway. CA-30 could protect LTP from impairment via modulating the intestinal microbiota. Decreasing corticosterone and glutamate and increasing D-serine in the Cort-treated animals' hippocampal tissue might be one of the mechanisms for the neural protective effects of LW-AFC. Further study is needed to understand the underlying mechanisms.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Animales , Corticosterona/toxicidad , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Potenciación a Largo Plazo/fisiología , Masculino , Medicina Tradicional China , Ratones Endogámicos BALB C , Sistemas Neurosecretores/fisiopatología , Deficiencia Yin
17.
Biol Trace Elem Res ; 192(2): 252-262, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30796616

RESUMEN

Among the chemical factors that have been implicated in the etiology of dementia, recent concern has focused on both increased and decreased exposure to the metalloid selenium (Se). This report describes the molecular, behavioral, and electrophysiological analysis of rats that were fed with Se-free chow and Se-enriched tap water for 21 days. Three groups were produced, feeding them on a deficient diet with different Selenium content. Hippocampus-dependent spatial learning was measured using the water maze. Long-term potentiation (LTP) was recorded in the hippocampal dentate gyrus to assess how memory is formed at the cellular level. Hippocampal Se levels were measured in trained rats by using inductively coupled plasma mass spectrometry. Phosphorylated and total tau levels were measured in whole hippocampus by Western blot. An impairment of learning of rats feeding with Se-deficient diet was accompanied by attenuated LTP, and increased ratio of p231Tau-to- and decreased ratio of p416Tau-to-Tau in the non-stimulated hippocampus, despite no significant change was observed in Se levels of hippocampus and plasma. Se supplementation resulted in an increase in both tissues and an increase in the ratio of p231Tau-to-Tau in the non-stimulated hippocampus but did not change learning performance and LTP. Despite impaired learning and LTP, no group differed in probe trial and in the fraction of phosphorylated tau in LTP-induced hippocampus. Reduced level of selenium would probably result in reduced synaptic plasticity as well as impairment of learning ability, suggesting requirement of Se for normal synaptic function.


Asunto(s)
Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Selenio/farmacología , Animales , Suplementos Dietéticos , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar , Selenio/administración & dosificación , Selenio/deficiencia
18.
Brain Res Bull ; 147: 14-21, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30721766

RESUMEN

Oxidative stress plays a key role in contributing to ß-amyloid (Aß) deposition in Alzheimer's disease (AD). Coenzyme Q10 (Q10) is a powerful antioxidant that buffers the potential adverse consequences of free radicals. In this study, we investigated the neuroprotective effects of Q10 on Aß-induced impairment in hippocampal long-term potentiation (LTP), a widely researched model of synaptic plasticity, which occurs during learning and memory, in a rat model of AD. In this study, 50 adult male Wistar rats were assigned to five groups: control group (saline); sham group; intraventricular PBS injection, Aß group; intraventricular Aß injection, Q10 group; and Q10 via oral gavage and Q10 + Aß group. Q10 was administered via oral gavage, once a day, for 3 weeks before and 3 weeks after the Aß injection. After the treatment period, in vivo electrophysiological recordings were performed to quantify the excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the hippocampal dentate gyrus. LTP was created by a high-frequency stimulation of the perforant pathway. Following LTP induction, the EPSP slope and PS amplitude were significantly diminished in Aß-injected rats, compared with sham and control rats. Q10 treatment of Aß-injected rats significantly attenuated these decreases, suggesting that Q10 reduces the effects of Aß on LTP. Aß significantly increased serum malondialdehyde levels and total oxidant levels, whereas Q10 supplementation significantly reversed these parameters and increased total antioxidant capacity levels. The present findings suggested that Q10 treatment offers neuroprotection against the detrimental effects of Aß on hippocampal synaptic plasticity via its antioxidant activity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Ubiquinona/análogos & derivados , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/farmacología , Animales , Antioxidantes/farmacología , Giro Dentado/efectos de los fármacos , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/fisiología , Trastornos de la Memoria/fisiopatología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/fisiología , Fragmentos de Péptidos/farmacología , Ratas , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos , Lóbulo Temporal/efectos de los fármacos , Ubiquinona/metabolismo , Ubiquinona/farmacología
19.
Geroscience ; 41(1): 77-87, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30739297

RESUMEN

The incidence of neurodegenerative disorders and cognitive impairment is increasing. Rising prevalence of age-related medical conditions is associated with a dramatic economic burden; therefore, developing strategies to manage these health concerns is of great public health interest. Nutritionally based interventions have shown promise in treatment of these age-associated conditions. Astaxanthin is a carotenoid with reputed neuroprotective properties in the context of disease and injury, while emerging evidence suggests that astaxanthin may also have additional biological activities relating to neurogenesis and synaptic plasticity. Here, we investigate the potential for astaxanthin to modulate cognitive function and neural plasticity in young and aged mice. We show that feeding astaxanthin to aged mice for 1 month improves performance on several hippocampal-dependent cognitive tasks and increases long-term potentiation. However, we did not observe an alteration in neurogenesis, nor did we observe a change in microglial-associated IBA1 immunostaining. This demonstrates the potential for astaxanthin to modulate neural plasticity and cognitive function in aging.


Asunto(s)
Envejecimiento/efectos de los fármacos , Cognición/efectos de los fármacos , Suplementos Dietéticos , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Envejecimiento/patología , Animales , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/dietoterapia , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Inflamación/dietoterapia , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/fisiología , Enfermedades Neurodegenerativas/dietoterapia , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Xantófilas/administración & dosificación , Xantófilas/farmacología , Xantófilas/uso terapéutico
20.
Mol Pharmacol ; 95(4): 337-348, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30696719

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that is the major cause of dementia in the elderly. There is no cure against AD. We have recently discovered a novel transient receptor potential canonical 6 (TRPC6)-mediated intracellular signaling pathway that regulates the stability of dendritic spines and plays a role in memory formation. We have previously shown that TRPC6 agonists exert beneficial effects in models of AD and may serve as lead compounds for development of AD therapeutic agents. In the current study, we used the Clarivate Analytics Integrity database to search for additional TRPC6 agonists. We selected four compounds to study as potential neuroprotective agents. We applied bioinformatics analyses to test the basic pharmacological properties of the selected compounds. We performed in vitro screening of these compounds to validate their ability to protect mushroom spines from amyloid toxicity and determined that two of these compounds exert neuroprotective effects in the nanomolar concentration range. We have chosen one of these compounds [piperazine (PPZ)] for further testing. In agreement with previously published data, we have shown that PPZ potentiates TRPC6 channels. We demonstrated that the neuroprotective mechanism of the investigated PPZ is based on activation of neuronal store-operated calcium entry in spines. We have shown that PPZ restores long-term potentiation induction in 6-month-old 5xFAD mouse hippocampal slices. The obtained results suggest that PPZ and its derivatives are potential lead molecules for development of AD therapeutic agents.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Piperazinas/farmacología , Enfermedad de Alzheimer/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Canales Catiónicos TRPC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA